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Abstract—In the past few years, objective quality assessment
models have become increasingly used for assessing or monitoring
speech and audio quality. By measuring perceived quality on
an easily-understood subjective scale, such as listening quality
(excellent, good, fair, poor, bad), these methods provide a quick
and repeatable way to estimate customer experience. Typical
applications include audio quality evaluation, selection of codecs
or other equipment, and measuring the quality of telephone
networks. To introduce this Special Issue, this paper provides an
overview of the field, outlining the main approaches to intrusive,
nonintrusive and parametric models and discussing some of their
limitations and areas of future work.

Index Terms—Audio quality, intrusive and nonintrusive testing,
objective models, quality assessment, speech quality.

I. INTRODUCTION

I N CONTEMPORARY audio and speech communications
systems, low bit-rate coding has become ubiquitous, ranging

from data rates below 4 kbit/s for some military and satellite
applications, to around 128 kbit/s for music storage or digital
radio. However, low bit-rate codecs, and processing elements
such as echo cancellation and noise reduction in telephone net-
works, are highly nonlinear-, time-, and signal-dependent pro-
cesses, and their effect on perceived quality is both significant
and difficult to predict.

Until the 1990s, the standard way to measure the quality of
these processes was to conduct a subjective test, which gives
the subject group’s mean opinion score (MOS) of the quality of
each condition under test. Section II of this paper provides fur-
ther details of the typical procedure. However, using human sub-
jects in a controlled environment is expensive and slow, so while
subjective tests are the ideal way to make substantial system de-
cisions like the selection of a codec for an international standard,
they are unsuitable for day-to-day quality evaluations.

The goal of objective measurement is to estimate subjec-
tive MOS automatically based on measurements of a system.
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Section II also discusses methods to evaluate the accuracy of
an objective model’s estimates, by comparison with subjective
test results.

With the computing power available today, all of the methods
in current use can be applied in real-time—for parametric voice
over IP (VoIP) assessment models, a single, low-cost test probe
can assess thousands of simultaneous calls, while the more com-
putationally intensive signal-based models can still typically
support several parallel channels from a single digital signal
processor (DSP). This means that it is practical to use objec-
tive quality measures to optimize networks for quality, capacity
or cost, or monitor networks based on customer experience.

An important factor in the development of accurate objec-
tive measures has been the use of models of human perception.
Researchers in psychophysics have constructed models of sev-
eral large-scale properties of the peripheral auditory system, in-
cluding the perception of loudness, frequency, and masking [1].
The ways in which such techniques are used, and the strength of
the perceptual analogy, vary considerably with the type of ob-
jective measure.

Intrusive models, discussed further in Section III, compare an
original test signal with a degraded version that has been pro-
cessed by a system. Such models have also been termed com-
parison-based, or full-reference. Most recent intrusive models
work by transforming both signals using a perceptual model to
reproduce some of the key properties of hearing, then computing
distance measures in the transformed space and using these to
estimate MOS (see, for example, [2]–[7]).

Nonintrusive models can be used in several configurations,
introduced in Sections IV and V. Nonintrusive signal-based
models (also known as no-reference or single-ended models),
which are in their infancy compared to intrusive models, esti-
mate MOS by processing the degraded output speech signal of
a live network (see, for example, [8]–[11]). Several signal-based
methods focus on models of speech production or speech signal
likelihood, although many exploit some aspects of perception
such as noise loudness.

In contrast, nonintrusive parametric models generally have
no sound signal to process (and so make limited use of per-
ceptual techniques), but instead estimate MOS from measured
properties of the underlying transport and/or terminal, such as
echo, delay, speech levels and noise [12], VoIP network char-
acteristics [13], [14], or cellular radio reception measures [15].
Parametric models are also widely used for network planning to
construct MOS estimates based on tabulated values such as the
codec type, bit-rate, delay, packet loss statistics, etc. [16].

This last approach requires a full characterization of the
system under test and is, therefore, sometimes referred to as
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Fig. 1. Overview of the black box signal approach and the glass box system parameter approach. In a mixed approach, parameters can also be estimated from the
signal input.

a glass box approach. Methods for which no knowledge of
the system under test is required are referred to as black box
approaches. Most real-world quality measurement systems use
mixed approaches, requiring assumptions such as the type of
codec and the audio terminals. An overview is given in Fig. 1.

It is important to note the limitations of objective models.
They are trained on subjective test data that necessarily covers
only a restricted set of conditions and is subject to voting errors,
and models are influenced by other variables such as the signal
being assessed. This limits their accuracy [7], [17]. These is-
sues, and other factors in the application of objective models,
are discussed in Section VI. Finally, some areas of interest for
further work are highlighted in Section VII.

II. SUBJECTIVE QUALITY

A subjective test begins with high-quality recorded material
that is representative of the content that the systems under test
will be used to process. These original signals (also termed ref-
erence signals) are processed through a wide range of condi-
tions. In addition to the systems under test, standard reference
conditions (anchors) are used to provide comparison with other
subjective tests and ensure that the test is reasonably balanced.
Both processed and original clips are then played, in random-
ized order, to subjects in a controlled environment using cal-
ibrated presentation equipment such as telephone handsets or
headphones, and the subjects are asked to give their opinion of
the quality or amount of degradation.

A. Listening Tests for Telephony

The most common approach used in the ITU-T and other
telecommunications bodies is described in ITU-T P.800 and
related recommendations [18], [19]. Typically, each original
recording consists of speech sentence pairs of around 5 s to 8 s
duration from a single talker, and recordings from two male and
two female talkers are used to evaluate each condition under test.
Noise may be added to simulate a noisy environment. The signals
are processed through a filter modeling the handset send path,

TABLE I
OPINION SCALES

then a speech encoder and other processes such as packet loss
that can occur in the network, followed by the decoder. Finally,
the material is presented to 24 to 32 naïve subjects using a stan-
dardized telephone receiver, and subjects vote on the quality of
each clip, most frequently using the five-point absolute category
rating (ACR) listening quality (LQ) scale [Table I(a)], [18].
For the ACR method to work well, and to be comparable to
intrusive models, it is important that the original signals are of
high quality and are included as a condition in the test.

Other opinion scales have also been used for telephony sub-
jective tests but are less common than ACR LQ. In particular for
assessing performance in noise, test cases may involve a com-
parison between the (possibly noisy) original signal and the de-
graded output, using the degradation category rating (DCR) or
comparison category rating (CCR) methods [18]. An advantage
of these methods is that they fix the point of zero audible distor-
tion, but due to the larger number of stimuli, they are much slower
to conduct than ACR tests. Recently, ITU-T has approved a new
subjective method specifically for evaluating the quality of noise
reduction systems. After hearing each test item (with no refer-
ence), subjects are asked to give three separate votes on different
aspects of the quality: the speech signal, the background, and
the overall quality [20]. The overall quality rating is similar to
a ACR LQ MOS score, while the other ratings provide possible
insights on more detailed signal quality aspects.

The diagnostic acceptability measure (DAM), which also cat-
egorizes distortion according to several different labels, was
widely used during the early development of quality assessment
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models and codecs [4]. Researchers have continued to examine
the dimensions of subjective quality perception using methods
such as multidimensional scaling (MDS) [21], [22].

B. Audio Quality Testing

Evaluating high quality audio codecs is challenging since dis-
tortions are often much more difficult to detect. The subjective
test methods of ITU-R BS.1116 focus on small impairments,
and use comparison-based methods rather than the ACR ap-
proach [23]. A range of speech and music clips is normally
chosen, often narrowed down during pre-test evaluations to
a small critical subset. Fewer subjects are used—often about
ten—but they are frequently selected on the basis of having
acute hearing and are trained to detect specific categories of
codec distortion such as pre-echo. Unlike telephony speech
quality testing, repeated listening, comparison with the original
reference signal, and the use of a hidden reference, are common
and consequently testing takes much longer. Often, the original
and degraded signals are synchronously looped and subjects are
free to switch between a hidden reference, the original and the
degraded signal. Subjects listen using high-quality equalized
headphones, and vote on a continuous opinion scale focusing
on impairments [Table I(b)], [23]. The resultant quality score is
termed subjective difference grade (SDG).

With the trend towards lower bit-rate audio with more au-
dible distortion, methods in between P.800 and BS.1116 have
also emerged. Listening quality can be used to evaluate audio,
either using the P.800 methods (though with wideband head-
phones rather than telephone handsets) or the MUSHRA pro-
cedure [18], [24], [25]. These approaches are normally quicker
than a BS.1116 test, though they typically need more subjects,
and while they may be less able to discriminate very small dif-
ferences it can be argued that they are more representative of
real users’ opinions.

C. Conversation Quality

The methods outlined above involve subjects listening pas-
sively. This lack of interaction makes them unsuitable to mea-
sure processes that only affect, or emerge, in interpersonal com-
munication [16], [26], [27]. In general, a user’s view of the
quality of a conversation over a telephone connection is built
up from three distinct attributes [28].

• Listening quality—how does the subject perceive the voice
from the other side of the link (noise, distortion)

• Talking quality—how does the subject perceive his/her
own voice (echo, sidetone, background noise switching)

• Interaction quality—how well can both parties interact
with each other (delay, double-talk distortions).

Talking and interaction quality are difficult to assess because
they strongly depend on properties of the voices and the conver-
sation. Interaction quality depends on delay and the talk-spurt
length used in a conversation [27]. The varying voice spectrum
can affect how echo is perceived. While in subjective listening
tests a large set of subjects can judge exactly the same phys-
ical signal, this is not possible in subjective conversational tests,
making it more difficult to find relations between subjective and
objective measurements.

In general, conversational tests use pairs of subjects, talking
over a test network while performing some kind of interactive

task, before voting (independently), normally using the quality
scale [Table I(a)], [27]. This allows tests to take account of all
of the properties of the network from each talker’s mouth to ear,
including sidetone and handset acoustics, echo, delay, and level
impairments [16], [18]. However, conversational tests are rela-
tively rare because they are slower and more expensive and com-
plex compared to listening tests. Simpler and faster methods,
such as double-talk tests and talking quality tests [26], are avail-
able, but model only some attributes of conversation quality and
are not widely used.

D. Performance Assessment of Models

Because objective models are designed to be used alongside,
or in place of subjective tests, their accuracy is evaluated by
comparison to subjective test data. ITU-T P.800.1 [29] defines
terminology to assist this:

• MOS-LQS—subjective MOS derived using an ACR LQ
subjective test;

• MOS-LQO—objective estimate of MOS-LQS, typically
from an intrusive or signal-based nonintrusive model;

• MOS-LQE—parametric estimate of MOS-LQS, typically
from the E-model.

Equivalent terms for conversation quality are also defined
(MOS-CQS etc). For BS.1116 audio quality, the corresponding
terms to MOS-LQS and MOS-LQO are SDG and objective dif-
ference grade (ODG) [6].

With ACR listening quality, comparison between MOS-LQS
and MOS-LQO can be difficult because there are often sub-
stantial variations between subjects, in particular from different
countries due to either cultural or language differences. Com-
bined with the tendency of subjects to vote depending on the
range of quality of the conditions already heard—which often
varies from test to test—there can be differences as large as
1.0 LQ MOS for the same network condition in different tests
[30]. Similar issues can arise with ACR conversation quality
tests. More generally, although objective quality should be
monotonically related to MOS, the relationship is not neces-
sarily linear; indeed, the variation between subjective tests is
also often nonlinear. This is accounted for by using normalized
objective quality to MOS mappings prior to computation of
performance measures, as first introduced in [31]. Several
authors have applied the logistic function [5], [32]. The logistic
function is now less favored because its flatness outside the
central range can conceal large prediction errors at high and
low quality. The current most common approach is to use a
monotonic polynomial fit [7], [33].

The preferred method of performance assessment in recent
standardization work, used for example in the selection of P.862
and P.563, is as follows. The variation between tests is elim-
inated by applying a monotonic polynomial to mapping from
objective scores onto the subjective scale for each MOS test.
This function typically is fitted for minimum squared error with
a gradient descent method, but is forced to be monotonic by
using a cost constraint. It is important that the mapping function
is monotonic because otherwise the rank order of predictions is
not preserved. The main measure of an objective model’s perfor-
mance is the Pearson correlation coefficient. The residual error
distribution may also be calculated as this gives an indication of
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Fig. 2. Overview of the intrusive modeling approach.

the likelihood that a model’s predictions lie within a given max-
imum error. For speech quality testing, to reduce variability due
to the talker and random voting error, the measures are com-
puted on the condition averages of MOS-LQS and MOS-LQO
(i.e., the average MOS-LQS, and the average MOS-LQO, for all
test cases representative of each given network condition) [7],
[11], [33].

Many subjective tests are required to verify that a model will
remain accurate with the very wide range of conditions that can
be encountered in practical systems such as telephone networks.
For example, the selection of P.862 was based on 22 subjec-
tive tests that were known to the authors in model training, and
eight unknown tests run by independent laboratories, containing
about 1300 conditions in total [33]. Readers are encouraged to
be skeptical of the accuracy of any proposed objective models
where few subjective tests are reported or where there is no in-
dependent validation of the results.

The need for data poses a significant problem, because rela-
tively few subjective tests are in the public domain due to prob-
lems with cost, confidentiality, and the desire of laboratories to
keep their original material unknown by codec developers or
competitors. For speech quality testing, ITU-T has made avail-
able ten tests conducted by leading laboratories, split into three
different sets of conditions [34]. For audio testing, EBU pub-
lishes a CD-ROM containing a wide range of critical, high-
quality source items [35]. Several subjective testing and codec
development laboratories have made other tests available to aca-
demic researchers—see, for example, [36]–[38].

III. INTRUSIVE OBJECTIVE MEASURES

Intrusive assessment is based on the use of known, controlled
test signals which are processed through the condition under
test. Both the original and processed signals are available to the
model, and it is also typically assumed that the original signal is
itself of near-perfect quality. (There has been little research into
the case of capturing in-service signals at the input and output
of a system for use with a comparison-based model, because of
the lack of control over the quality of the original.) The problem
in this case is to estimate the MOS of the degraded signal from
the differences between the original and degraded signals.

The development of intrusive models has been closely related
to that of low bit-rate speech and audio codecs. From the 1970s,
many researchers have applied perceptual methods to speech

codecs to allow coding distortions to be optimized for minimum
audibility rather than mean squared error, leading to an improve-
ment in perceived quality [40]. This concept was extended by
Brandenburg to create the noise-to-mask ratio (NMR) measure,
which uses a perceptual masking model to compare the level
of the coding noise with the original signal [3]. Several other
waveform difference measures have also been considered; see,
for example, [4] or the references in [5].

The problem with using waveform difference to derive a
quality measure is that substantial changes can be made to a
signal waveform that give a large waveform difference, but
little or no audible distortion: for example, waveform inversion
and phase distortion.

These processes have minimal effect if quality predictions
are made on the basis of differences in a transformed space
that matches as closely as possible a hypothetical representa-
tion of the signal in the brain or peripheral auditory system.
For intrusive quality assessment, this concept was introduced
by Karjalainen in 1985 in the auditory spectrum distance (ASD)
model [2]. It has become the most successful approach in intru-
sive quality assessment, used, for example, in ITU-T P.861 and
P.862 and ITU-R BS.1387 [5]–[7]. In this approach, the audio
signal is mapped from the time domain to a time frequency rep-
resentation using the psychophysical equivalents of frequency
and intensity, i.e., psychophysical frequency and loudness. (The
more advanced methods model masking as the result of a combi-
nation of smearing and compression [6], [41]) In these models,
the original and degraded signal are first filtered with the ap-
propriate transfer function of the loudspeaker, handset, or head-
phone. Then the time signals are mapped to the time frequency
domain and then smeared and compressed resulting in two time-
frequency-loudness density functions. Next, these density func-
tions are passed to a cognitive model that interprets the dif-
ference function, often with substantial additional processing,
taking into account other properties such as the signals’ instan-
taneous loudness. This cognitive model is trained using a large
set of training data and validated on unknown data. An overview
of this modeling is given in Fig. 2.

Although new psychoacoustic models, that closely follow
our internal auditory processing steps, are capable of predicting
many aspects of psychoacoustic data (see, for example, [42]), the
most advanced models of human perception do not necessarily
result in the best quality prediction model. Several authors have
reported improved performance using more detailed models of
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perception [43]–[46]. On the other hand, Beerends found that the
optimal time-frequency smearing for measuring speech quality
does not coincide with the well known time-frequency smearing
as found in psychoacoustics experiments [47]. Furthermore,
Ghitza [48] reported that the correlation between subjective
scores and objective predictions, using an advanced psychoa-
coustic model, was lower than with a simple approach as given in
[49]. He suggested that a reason may be the lack of a good model
of central auditory processing (i.e., beyond periphery), which
governs the way humans judge the distance between acoustic
stimuli. Beerends tried to incorporate this idea into an integrated
approach towards measuring speech and music codecs using a
more advanced cognitive model [50]. In the current standardized
models for measuring audio quality [6] and speech quality [7],
no satisfactory combination of advanced psychoacoustic and
cognitive modeling is used.

A. Audio Quality

Intrusive models for audio quality assessment have gener-
ally focused on subjective tests conducted on a similar basis to
BS.1116, with emphasis on distortions that are inaudible or just
noticeable to expert listeners [23].

Several models developed during the early 1990s were sub-
mitted to a competition run by ITU-R from 1994–1996 [41],
[51]–[55]. The first of these, Beerends and Stemerdink’s per-
ceptual audio quality measure (PAQM) was the most successful
but did not meet the ITU-R’s requirements. To achieve improved
accuracy, PAQM was integrated with NMR and the other sub-
mitted models. Furthermore, the model of Thiede [53], which
also incorporated a frequency response equalization process,
was further enhanced and proved to be the best overall pre-
dictor of perceived audio quality. In the final perceptual eval-
uation of audio quality (PEAQ) standard both models are in-
cluded and known as the simple and advanced method [6], [55].
The PEAQ advanced model in particular makes use of a wide
range of perceptual transformations, representing the signals in
terms of modulation, specific loudness, excitation, and excita-
tion equalized for linear filtering and slow gain variation.

Recent work in audio quality assessment has included a new
approach to measuring both linear and nonlinear distortions in
the perceptual transform (excitation) domain [45], as well as as-
sessment of features that can be used for the prediction of multi-
channel spatial audio fidelity [56]. Improvements to PEAQ, in-
cluding new distortion parameters and a new cognitive model,
have been proposed [57]. The limitation of PEAQ to a maximum
of two channels has been addressed by the development of an
expert system to assist with the optimization of multichannel
audio systems [58].

B. Speech Quality

Since the 1980s, many intrusive speech quality estima-
tion models have been proposed (see, for example, [2], [4],
[31]–[33], [36], [37], [43], [44], [48], [49], [59]–[64]). The
majority of these compute MOS-LQO for telephone-bandwidth
speech conditions.

Following a competition run by ITU-T in 1994–1996, where
several approaches were compared, a simple approach known as
the perceptual speech quality measure (PSQM) was found to be

the most accurate model with both known and unknown subjec-
tive MOS data. It was adopted as the first standard perceptual
model, ITU-T P.861, in 1996 [5]. Unlike [2], PSQM did not
take account of temporal masking. However, PSQM improved
on earlier models in its silent interval processing, giving less
emphasis to noise in silent periods than during speech, and its
use of asymmetry weighting. Asymmetry weighting models the
increased disturbance due to adding new, uncorrelated, time-fre-
quency components to a signal (positive error) compared to at-
tenuating or deleting components (negative error), as deletion
is often concealed by the brain. These changes, combined with
optimizations for increased correlation with MOS-LQS, led to a
perceptual model that is highly specialized to the task of speech
quality assessment, but that differs significantly from the periph-
eral auditory models in the literature.

PSQM and other early models were trained on subjective tests
of speech codecs, and as a result they were found to perform
poorly when used to assess some types of telephone network.
Particular issues were found with packet loss and variable delay,
both of which are common in VoIP, or small amounts of linear
filtering that are unavoidable in analog connections. Intrusive
models can measure large false errors, and can give highly in-
accurate scores if these properties are not taken into account.
Because of this, from the mid-1990s, researchers began to use
larger subjective test databases, containing conditions represen-
tative of these network properties, to develop models that would
be more accurate when used in the field.

The perceptual analysis measurement system (PAMS), devel-
oped by Hollier, Rix, and others [61], [62], extended the Bark
spectral distortion (BSD) model of Wang et al. [31] for assess-
ment of telephone network conditions. It includes a multiscale
time alignment algorithm to account for VoIP variable delay
[63], uses a filterbank rather than a fast Fourier transform (FFT),
performs partial equalization of linear filtering, and maps mul-
tiple distortion measures to estimate subjective MOS on both the
listening quality and listening effort opinion scales [18], [62].
Other authors working on BSD have proposed masking models
[36], [64] or the use of phaseless coherence to eliminate the ef-
fect of linear filtering [37].

Focusing on the need for an intrusive model for assessment
of telephone networks (including VoIP and mobile) as well as
speech codecs, ITU-T held a second competition from 1998 to
2000. PAMS and an extended version of PSQM were the two
models with the highest overall performance. To meet the ITU-T
requirements, the time alignment of PAMS was integrated with
the PSQM perceptual model, including improvements such
as partial frequency response equalization, a simple masking
model, and asymmetry weighting to model noise perception, and
the model was retrained across a larger data set. The combined
model, referred to as perceptual evaluation of speech quality
(PESQ), was standardized as ITU-T P.862 in 2001, replacing
P.861 [7], [33], [63]. The average correlation between PESQ
score and MOS-LQS for the 22 subjective tests used in training
was 0.935. The average correlation for eight unknown tests used
for model validation was also 0.935. For an extended data set
of 40 subjective tests including the training and validation sets,
93.5% of conditions were, after mapping, within 0.5 MOS, and
99.9% of conditions were within 1.0 MOS after mapping [33].
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Note that these conditions represent essentially all data known
at the time of standardization, including a substantial number
of cases for which PESQ was found not to be as accurate as
required and which are, therefore, excluded from its scope [7].

PESQ has been criticized, extended, or improved by several
authors. Because PESQ scores are on an arbitrary scale that is
not representative of typical subjective tests, a mapping from
PESQ score to MOS-LQS, averaged across many different labo-
ratories and subjective tests, was standardized by ITU-T to allow
PESQ to give MOS-LQO figures that are on a 1–5 MOS scale
typical of ACR LQ tests [30], [65].

PESQ has been modified to optimize performance for speech
codecs operating below 4 kbit/s [66], which are outside the
scope of P.862 [7]. The effect on PESQ of measurement con-
ditions such as signal level has also been studied, and it has
been noted that measured quality drops significantly if too
high or low a level is used or if the signal spectrum is poorly
matched, issues that are discussed further in Section VI [17],
[67]. Finally, experiments have been conducted with PEAQ,
PESQ and other models to change their input filter banks,
which are all roughly based on the Bark scale, to the equivalent
rectangular bandwidth (ERB) scale, though with PESQ this
was found to produce little improvement [1], [68].

C. Extension of Speech Quality Models

Following the standardization of PESQ, work has continued
to extend the scope of intrusive assessment beyond traditional
telephony speech quality. A wideband version of PESQ, re-
placing its telephone handset input filter with a simple high-pass
filter, has recently been standardized by ITU-T for assessment
of wideband speech (50–7000 Hz) [24]. Models such as PESQ
have been considered for use in assessing the quality of noise re-
duction algorithms, which pose an interesting problem because
their complicated processing can improve or degrade quality de-
pending on the signal conditions and subjective measurement
method, and also it is not clear what reference signal should be
used. New objective models have been proposed to address this,
by taking as inputs not only the clean (noise-free) original and
processed degraded signals, but also an intermediate signal, the
noisy original signal prior to the noise reduction process [69],
[70]. These new models estimate P.835 subjective quality using
information such as the effect of the noise reduction on the in-
stantaneous loudness of both speech and noise [20].

A major focus of recent research has been to include the
acoustic path at the send and/or receive handsets, as well as
hands-free terminals, to allow assessment of both handset and
network. This is important because the acoustics and signal pro-
cessing in the handset can have a substantial effect on overall
quality. To allow acoustic measurements to be made, a head-
and-torso simulator (HATS) models a user’s mouth or ears [71].
Beerends, Berger, Goldstein, and Rix collaborated on a submis-
sion known as acoustic assessment model (AAM), which ex-
tended PESQ with improved level, time and frequency response
alignment, temporal and frequency masking, and a binaural cog-
nitive model. The model offered improved performance com-
pared to PESQ for assessment of telephone networks at dig-
ital or analog electrical interfaces, particularly in the worst case
[72], [73]. However, the lack of standards for subjective testing

of acoustic network measurements with environmental noise,
combined with concerns in the ITU-T about the need for a new
model, led to AAM being shelved, and a new selection process
is under way (see Section VII).

IV. NONINTRUSIVE MEASUREMENT

Nonintrusive estimation of speech quality from speech
waveforms is a challenging problem in that the estimation of
speech quality has to be performed with the speech signal under
test only, without using a reference. Considering that reference
speech signals are not presented together with the speech under
test to human listeners in ACR tests, nonintrusive estimation is
more analogous to the situation of subjective ACR MOS tests.
However, the lack of reference means that the compensation of
variability in speech caused by different speakers and different
utterances is quite limited in nonintrusive models compared to
intrusive models.

Nevertheless, there has been substantial progress in this area,
together with the growing need to monitor the speech quality of
in-service networks, where intrusive models cannot be applied
as reference speech signals uttered by end users are not con-
trolled and may not be available to an objective model.

The first nonintrusive signal-based model in the literature was
proposed in 1994 by Liang and Kubichek [8], and the approach
that it uses, to estimate the difference between the measured
signal and some ideal space of speech signals has been followed
by several other authors. In this model, reference centroids are
first trained from the perceptual linear prediction (PLP) coeffi-
cients [74] of nondegraded speech signals, and then the time-av-
eraged Euclidean distance between degraded PLP coefficients
and the nearest reference centroid is calculated as an indica-
tion of speech quality degradation. Various distortion measures
commonly used in vector quantization (VQ) were explored to
improve the performance of model [75], and an approach based
on hidden Markov model (HMM) was also proposed [76]. Re-
cently, the idea to measure the deviation of degraded speech
from the statistical model trained on clean speech was expanded
by Falk et al., in which Gaussian mixture models (GMMs) were
used to model the PLP feature vectors for clean speech. In ad-
dition to the clean reference speech signals, degraded speech
signals were used in obtaining the multivariate adaptive regres-
sion splines to map the output of GMM to ACR LQ [38], [39].

A related approach has been to assume that most speech
quality degradation caused by speech processing systems in
telecommunication networks cannot be produced by biological
human speech production systems due to the limited motor
mechanism of the human vocal tract. Gray considered a model
based on the parameterization of a vocal tract model which
is sensitive to telecommunication network distortions [9].
Beerends and Hekstra also proposed a model based on the
integration of a speech production model for detecting signal
parts that cannot be produced by human vocal tracts and the
PESQ intrusive model for estimating the impact of those signal
parts [77].

In contrast to the direct utilization of a speech production
model, Kim proposed an auditory model for nonintrusive
quality estimation (ANIQUE) in which both peripheral and
central levels of auditory signal processing are modeled to
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extract the perceptual modulation spectrum. The modulation
spectrum is then related to the mechanical limitation of speech
production systems to quantify the degree of naturalness in
speech signals [10], [78].

ITU-T held a competition from 2002 to 2004 to standardize
a nonintrusive signal-based model. In terms of network condi-
tions, the scope of the model was set slightly wider than P.862,
in particular including subjective tests with a broader range of
acoustic inputs, network measurements, and noise types, and
with talkers speaking in noisy conditions. Two proposals were
submitted, with the ANIQUE model [10] being narrowly beaten
by a combined model, known as single-ended assessment model
(SEAM), which was based on three different models including
those of Gray and Beerends and Hekstra [9], [77]. SEAM was
adopted as ITU-T P.563 in 2004 [11], [79].

In P.563, a set of key parameters are extracted for the analysis
of 1) vocal tract and unnaturalness of speech, 2) strong additive
noise, and 3) interruptions, mutes, and time clipping. Based on
these parameters, the intermediate speech quality is estimated
for each distortion class, and the overall quality is obtained by
a linear combination of intermediate speech quality with 11 ad-
ditional signal features.

The average correlation of SEAM MOS-LQO with
MOS-LQS was 0.88 over the set of 24 subjective tests used
for training and validation. This is lower than the correlation
of PESQ over the same data set (0.93), due not least to the
lack of reference available to SEAM, but does indicate that the
model has good correlation with subjective test data. While
good progress has been made in nonintrusive assessment in
recent years, there is clearly still scope for improvement and
field experience of using this model.

V. PARAMETRIC OR GLASS BOX METHODS

Computational models have been widely used for many
years for planning telecommunications networks without con-
ducting subjective tests. The approach has more recently been
applied to nonintrusive measurements of network parameters
such as echo and delay, and to real-time assessment of VoIP
systems where the dominant distortions, packet loss, jitter, and
the codec, can be accurately modeled by a small number of
statistical measures.

A. E-Model

The E-model is a telecommunication transmission planning
model that was originally developed by ETSI for predicting the
overall conversational quality of voice links [16]. The E-model
presupposes that all parameters of the voice link that has to be
assessed are known. In this glass box approach (see Fig. 1),
the system under test is decomposed into a set of factors which
affect the conversational quality. Within the telecommunication
industry, a large set of commonly found contributing factors,
such as loudness, background noise, low bit-rate coding dis-
tortions, packet loss, delay, echo, etc., have been quantified
regarding their impact on the conversational speech quality.
The primary output of the E-model is a quality rating factor R
on a 0–100 scale. An invertible mapping exists between R and
conversational MOS-CQE. Three main impairment factors are
distinguished in the model: impairments which occur more or

less simultaneously with the voice signal, impairments caused
by delay and, the equipment impairment factor representing
impairments caused by low bit rate codecs and errors such as
packet loss. A method has been standardized by ITU-T for
estimating equipment impairment factors using subjective tests
or objective models such as PESQ [80].

The E-model was designed for evaluating networks that may
not yet exist, and it is the only standardized model available
for this purpose. However, several of the simplifying assump-
tions on which it is based—for example, linearity and order
independence—are known to be wrong in some circumstances.
As a result, it is recommended only for use as a planning tool.
Nevertheless, by measuring certain parameters on the voice
link it can also be used in voice quality monitoring [12], [13],
[81]. While the current E-model applies only to telephone
bandwidth (300–3400 Hz) speech signals, work is under way
to extend it for wideband (50–7000 Hz) speech transmission
systems [16], [82].

B. Parametric Quality Measures of Specific Network Types

For traditional telecommunications networks that are subject
to minimal channel errors or coding distortions (typically those
with only mu-law or A-law coding at 64 kbit/s), conversation
quality is often dominated by talker echo from analog con-
nections, round-trip delay, noise, and changes to the speech
level. In-service nonintrusive measurement devices (INMDs)
allow these network parameters to be measured, typically at
trunk or international switching centers. Two models have
been standardized to allow these objective parameters to be
used to estimate conversational MOS: the E-model and the call
clarity index (CCI) [12]. The E-model approach combines the
measured parameters with a set of default assumptions, using
the existing E-model framework to estimate R. CCI contains a
functional mapping specifically derived to compute MOS-CQO
from INMD measures of the speech and noise levels, echo loss,
and delay.

A similar approach can be applied to other types of speech
or audio processing. Subjective test data is used to train a func-
tional mapping from the objective parameters to MOS. The re-
sultant mapping is only applicable to the specific network types
and the range of conditions exercised in the training data. It
is also possible to use an intrusive model instead of subjective
tests, although systematic inaccuracies in the intrusive model
will be reflected in the parametric model. Examples of this ap-
proach are given in [14], [15].

One application of recent interest is to estimate the quality
of in-service wireless networks from parametric measures of
link-level properties such as bit-rate, residual bit error rate, and
speech codec frame erasure [15], [83]. A challenge here is to
gather enough data to adequately model the very wide range of
types of error that can occur in current mobile channels, with
variation in the data rate, channel signal-to-noise ratio, forward
error correction, velocity and multipath profile, and the type and
level of interference.

C. Parametric Measurement of VoIP Quality

Since the late 1990s, VoIP has become more and more
common in telephony, leading to a number of quality issues
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including increased delay, packet loss, and the widespread
use of compression as low as 5.3 kbit/s. Loss of packets due
to network loss and delay jitter is particularly important to
network operators because it is load-dependent and difficult to
characterize, even in networks that use traffic management.

Two approaches to parametric VoIP quality monitoring have
been proposed. To allow real-time monitoring in low-power
edge devices and on network trunks that may carry very large
numbers of active calls, it is not possible to process the speech
waveform; instead, the models compute distortion parameters
from the real-time protocol (RTP) transport that encapsulates
the voice stream, and estimate round-trip delay from control
protocol parameters.

Clark described a method based on the Gilbert model, a
Markov chain model that is commonly used for modeling burst
errors in a range of communications channels. From estimates
of the Markov model parameters computed from the RTP
stream, this model derives an equipment impairment factor, one
of the inputs to the E-model [13]. Clark has also proposed mod-
ifying the E-model to take account of time-varying perception
of quality, which is discussed in Section VI.

Broom has criticized this approach on the grounds that there
are large variations between VoIP devices in the implementa-
tion of jitter buffers and error concealment. He has developed a
proprietary model, based on multiple parameters extracted from
the packet stream, that is calibrated for a specific VoIP device
(such as an IP phone or gateway). This is achieved by making
thousands of intrusive speech quality measurements of the de-
vice under test, using a network emulator to vary the operating
conditions, and then training a numerical model to predict the
PESQ scores for each condition [14].

Both of these models were presented to an ITU-T process to
standardize a VoIP parametric model. No winner was selected;
instead, a new ITU-T standard, P.564, is currently being con-
sidered by ITU-T study group 12. Previously known under the
working title of P.VTQ (voice transmission quality), this is ex-
pected to recommend a method of performance assessment sim-
ilar to the calibration process of [14]. Third parties could then
use this performance assessment method to determine the accu-
racy of a VoIP objective model.

VI. APPLICATIONS

A. Use of Objective Models

Objective models such as PEAQ (BS.1387), PESQ (P.862)
and SEAM (P.563) are trained to predict the results of subjective
tests, and as such, they are generally limited to the scope of the
training data and cannot be guaranteed to perform well outside
this [6], [7], [11]. For example, as mentioned above, the scope
of PESQ does not include very low bit-rate audio codecs with
data rates below 4 kbit/s because few of these were used in its
training [7], and it been found to correlate relatively poorly with
MOS when assessing such codecs [66].

Subjective test data imposes a limit on models’ accuracy.
Random errors in voting, combined with systematic bias due to
factors such as the speech signals used or the balance of other
conditions in the test, mean that each condition in a telephony
MOS-LQS test typically has a 95% confidence interval between

0.1–0.3 MOS. Training using large numbers of subjective tests
can allow models to improve on this a little, but the cost of sub-
jective tests means that models are usually trained with at most
a few tens of tests. As a result, accuracy for a given condition
is normally on the order of 0.1 MOS. In practice, this seldom
presents a problem because even expert listeners struggle to
distinguish differences in quality of this magnitude in an ACR
context.

Although the expectation is that continued progress will be
made in the field of objective estimation of audio and speech
quality, this practical limit to achievable accuracy will be diffi-
cult to surmount. As a result, for the most critical assessments
such as the selection of a new codec, where the difference be-
tween candidates may well be smaller than this limit, carefully
designed subjective tests (possibly used in combination with ob-
jective testing) are highly advisable.

An advantage of standardized models is that they are pub-
licly available, peer reviewed, and independently tested. As a
result, important conditions that can cause accuracy problems
with a given model are often already known, and it is advisable
for users to check the scope of a model before using it exten-
sively. These problems may be due to issues in subjective test
data—for example, if test results strongly conflict—or system-
atic bias with a specific type of distortion or test signal, and they
can result in errors as large as 0.5–1.0 MOS in extreme cases.
Some commercial implementations of models such as PESQ in-
clude automatic diagnosis of certain failure conditions, which
can assist the operator, but this is not a substitute for reading the
standard and its associated guidelines, or for listening to some
of the conditions under test [7], [17].

The accuracy and repeatability of intrusive models depend to
a great extent on how they are used, and mistakes remain rela-
tively common. The test signals must be carefully chosen to be
free from spurious noises, and have typical (and near-optimal)
level and spectral content—for telephony, this usually involves
prefiltering recordings with a send filter like the IRS—other-
wise, they may cause codecs to behave poorly due to clipping
or increased coding distortion, or lift the noise floor [17]. Speech
signals should contain both speech and silent intervals and have
a balanced phonetic content representative of the languages used
in the applicable market [7]. Audio signals must be clean and
cover a good range of content types, and the operator should de-
termine whether to test using critical material such as [35], typ-
ical material, or a combination of both. Finally, the test equip-
ment used to inject and record the signals must be of sufficiently
high quality not to introduce additional distortion.

Signal dependence should also be considered because both
speech and audio codec quality can vary significantly with
signal content. With audio codecs, this is often of specific
interest and so measurements are sometimes considered in-
dependently, although for overall comparisons it is normal
to average results across all pieces of material for a given
condition under test. Speech quality models, including PSQM,
PESQ, and SEAM, have not generally been validated for talker
or utterance (content) dependency, and they are designed to
be used by averaging the objective scores for several different
speech samples, typically taken from at least two male and two
female talkers, to represent the quality of the condition [7].
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Similar issues also affect nonintrusive models. The idealized
conditions of subjective tests are a long way from the real signals
obtained from measurement points in live networks, terminals,
or other edge devices—key points of application of SEAM and
other nonintrusive models. In particular, care needs to be taken
if signals could have nonoptimal levels or spectral content, or
where the signals are captured upstream of echo cancellers and
as a result may contain high levels of network or acoustic echo.

B. Time-Varying Quality

Most of the models introduced above have focused on esti-
mating short-term MOS, typically measured in subjective tests
using 8 s samples. This timescale is long enough for subjects to
form an opinion of quality, but short enough to allow time vari-
ation often to be ignored, and to minimize the total test length.
However, a typical duration of a phone call or audio track is on
the order of 2 min, and several researchers have studied how
timescales may affect quality perception.

Gray found weak evidence, using 30 s speech paragraphs, that
the first part of the speech sample had greatest weight on overall
MOS, and termed this the primary effect [84]. Rosenbluth’s
study, which used 60 s of concatenated short-term speech sam-
ples, found the opposite, known as the recency effect because
the last part of the long-term sample had greatest weight [85].
Several more recent tests have shown weak or no evidence for
either the primary or recency effects [86], [87]. As these tests
differed substantially in their design, but none was large in terms
of number of subjects, speech samples or processing conditions,
it cannot be said that there is clear evidence for either primary
or recency effects.

However, in all of the tests, mean short-term MOS was a good
first-order predictor of long-term MOS. This suggests that it is
reasonable to average short-term objective quality scores over
the duration of a call to obtain an estimate of overall MOS.
Often this is complemented by also considering the worst-case
short-term quality. A recent study by Raake indicates that poor
worst-case quality does have a significant impact on long-term
quality perception [81]. The use of mean and worst-case mea-
sures together avoids the possibility that periods of sustained
poor quality could be outweighed by good quality—an issue
with any single long-term MOS metric—where in practice a
user may hang up if quality remains very poor for more than
10 s to 20 s.

VII. FUTURE WORK

A major trend in intrusive measurement of speech quality
is the extension towards wideband signals. The new wideband
PESQ (P.862.2) [24] has only been validated on a limited set of
distortions, and further evaluations of this model are expected.
ITU-T is preparing a call for proposals for a new model to re-
place or complement PESQ, with the working title P.OLQA
(Objective Listening Quality Assessment). It also proposed to
take into account the multiple dimensions of speech quality
using multidimensional modeling [88], [89]. It is expected that
the new method would be able to assess speech quality between
telephone bandwidth (300–3400 Hz) and full audio bandwidth

(20–20 000 Hz). Furthermore, the current E-model is being ex-
tended towards the use of wideband speech signals (50–7000
Hz) [82].

In audio quality assessment, PEAQ does not correlate well
with wideband speech databases, and it was approved on the
basis of near-transparent quality audio [6], while the mass-
market use of audio codecs that has evolved in subsequent years
is generally at a lower quality level. Although at present there are
no plans for a replacement to this model, recent research indi-
cates that improvements are possible [57], and some of the ideas
in PEAQ could prove useful for P.OLQA. Other active areas of
research are the quality assessment of multi-channel audio (e.g.,
5.1 surround sound), and automotive audio quality [56], [58].

Conversation quality assessment, either intrusive or nonintru-
sive, is one area that remains little studied. This may be due in
part to the difficulty and cost of conversational subjective tests,
or to the improvement of echo cancellers which can minimize
one of the dominant conversational impairments. This lack of
research is a concern because most telephone systems are used
conversationally. A concept for intrusive conversation quality
assessment using two or more test nodes that emulate the be-
havior of human talkers has already been proposed, but has yet
to be implemented [90].

Nonintrusive measurement methods, both signal-based and
parametric, are relatively new, with the first generation of
models designed for network assessment only emerging in
the last five years. As these methods start to become widely
used, it is highly desirable that experience on their strengths
and weaknesses is published. The practical use of nonintrusive
models such as [11] in devices such as mobile handsets, and in
networks subject to two-way traffic including double-talk and
echo canceller artifacts remains challenging.

Although multimedia is outside the scope of this Special Sec-
tion, speech or audio quality is an important part of multimedia
communications, and perceptual methods have also been ap-
plied to video quality assessment. Initial models for combining
measures of audio and video quality to give an overall audiovi-
sual MOS have been published, but they are based on limited
data, and this remains a fruitful area for further research in both
subjective and objective domains.
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